Невозможное возможно: метеоритные квазикристаллы

Рубрики СтатьиОпубликовано

Структура пространства расширяет границы, позволяя находить ранее невиданное

Уже два раза Нобелевскую премию дают за вещества, которых не должно быть. Первый раз это был графен*, в который никто не верил, второй раз — квазикристаллы, которые, по классической теории, вообще не могут существовать.

Не могут, но упорно существуют.

Квазикристаллы имеют схожую область применения, плюс обладают двумя важными свойствами — во-первых, способны укреплять композитные материалы (например, для получения сверхпрочных сталей — иголки для операций по глазам), а, во-вторых, при охлаждении квазикристалл становится изолятором, а при нагреве — проводником. Естественно, большие перспективы в LED-технологиях и вообще во всём, что начинается на «нано» в хорошем смыле этого слова.

На прошлой неделе в Digital October прошла лекция Пола Стейнхардта — учёного, который съездил на Чукотку в поисках естественных квазикиристаллов и прошел целую детективную историю, чтобы получить образцы. Но начнём сначала.

Что такое квазикристалл?

По сути — это сложно «упакованное» вещество, обладающее регулярной структурой. Отличие от обычных кристаллов в том, что эта структура не должна существовать по целому списку причин. Было уже доказано, что возможна симметрия второго, третьего, четвертого и шестого порядка, а для других случаев, она в общем-то, невозможна. Во всяком случае, так считали раньше. Для примера — привычная структура кристаллической решетки углерода даёт алмаз. Гексагональная структура даёт графит, который отличается другими свойствами.

С другой стороны, невозможно, например, правильными пятиугольниками замостить какую-то плоскость, точно так же это считалось невозможным и для десятиугольников. Правда, в 1982 году Шехтман (который в 2011 получил Нобелевскую премию по химии) показал, что предыдущие представления были неправильные.

Читать далее «Невозможное возможно: метеоритные квазикристаллы»

Теги: